Home
Class 12
MATHS
If the probability density function of a...

If the probability density function of a random variable X is `f(x)=x/2` in `0 le x le 2`, then `P(X gt 1.5 | X gt 1)` is equal to

A

`7/16`

B

`3/4`

C

`7/12`

D

`21/64`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the conditional probability \( P(X > 1.5 | X > 1) \) given the probability density function (PDF) \( f(x) = \frac{x}{2} \) for \( 0 \leq x \leq 2 \). ### Step-by-Step Solution: 1. **Identify the Events**: - Let \( A \) be the event \( X > 1.5 \). - Let \( B \) be the event \( X > 1 \). We need to find \( P(A | B) \), which can be calculated using the formula: \[ P(A | B) = \frac{P(A \cap B)}{P(B)} \] 2. **Find \( P(A \cap B) \)**: - The event \( A \cap B \) corresponds to \( X > 1.5 \), since if \( X > 1.5 \), it is also greater than 1. - Therefore, \( P(A \cap B) = P(X > 1.5) \). We calculate \( P(X > 1.5) \) using the PDF: \[ P(X > 1.5) = \int_{1.5}^{2} f(x) \, dx = \int_{1.5}^{2} \frac{x}{2} \, dx \] Now, we calculate the integral: \[ = \frac{1}{2} \int_{1.5}^{2} x \, dx = \frac{1}{2} \left[ \frac{x^2}{2} \right]_{1.5}^{2} \] \[ = \frac{1}{2} \left( \frac{2^2}{2} - \frac{(1.5)^2}{2} \right) = \frac{1}{2} \left( \frac{4}{2} - \frac{2.25}{2} \right) \] \[ = \frac{1}{2} \left( 2 - 1.125 \right) = \frac{1}{2} \times 0.875 = \frac{0.875}{2} = \frac{7}{16} \] 3. **Find \( P(B) \)**: - Now we calculate \( P(B) = P(X > 1) \): \[ P(X > 1) = \int_{1}^{2} f(x) \, dx = \int_{1}^{2} \frac{x}{2} \, dx \] \[ = \frac{1}{2} \int_{1}^{2} x \, dx = \frac{1}{2} \left[ \frac{x^2}{2} \right]_{1}^{2} \] \[ = \frac{1}{2} \left( \frac{2^2}{2} - \frac{1^2}{2} \right) = \frac{1}{2} \left( \frac{4}{2} - \frac{1}{2} \right) \] \[ = \frac{1}{2} \left( 2 - 0.5 \right) = \frac{1}{2} \times 1.5 = \frac{3}{4} \] 4. **Calculate \( P(A | B) \)**: Now we can substitute the values we found into the conditional probability formula: \[ P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{7}{16}}{\frac{3}{4}} = \frac{7}{16} \times \frac{4}{3} = \frac{7 \times 4}{16 \times 3} = \frac{28}{48} = \frac{7}{12} \] ### Final Answer: Thus, \( P(X > 1.5 | X > 1) = \frac{7}{12} \).
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY DISTRIBUTION

    TARGET PUBLICATION|Exercise Competitive Thinking|9 Videos
  • PLANE

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos

Similar Questions

Explore conceptually related problems

If the probability density function of a random variable X is given as then F(0) is equal to

The probability of a random variable X is given below Determine P (X le 2) and P (X gt 2)

The probability of a random variable X is given below Find P (X le 2 ) + P (X gt 2)

If the p.d.f of a random variable X is F(x)={(0.5x, 0lexle2), (0, "otherwise"):} Then the value of P(0.5 le X le 1.5) is

Show that the function f(x) defined by . f(x) = (1)/(7) , for 1 le x le 8 =0, otherwise, is a probability density function for a random variable. Hence find P(3 lt Xlt 10)

The p.d.f of continuous random variable X is given by f(x)=x/8,0 lt x lt 4 =0 otherwise. Find (i) P(X lt 2) (ii) P(2 lt X le 3) ( iii) P( X gt 3.)

If f(x)={{:(,|x|, x le1),(,2-x,x gt 1):} , then fof (x) is equal to

If f(x) = x for x le 0 = 0 for x gt 0 , then f(x) at x = 0 is

f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5