Home
Class 12
MATHS
If the random variable X takes the valu...

If the random variable X takes the values `x_1,x_2,x_3….,x_(10)` with probablilities P `(X=x_i)=ki` , then the value of k is equal to

A

`1/10`

B

`1/15`

C

`1/55`

D

`10`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY DISTRIBUTION

    TARGET PUBLICATION|Exercise Competitive Thinking|9 Videos
  • PLANE

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • THREE DIMENSIONAL GEOMETRY

    TARGET PUBLICATION|Exercise Evaluation Test|9 Videos

Similar Questions

Explore conceptually related problems

If a random variable "X" takes values ((-1)^(k)2^(k))/k, k=1,2,3,... with probabilities P(X=k)=(1)/(2^(k)) , then E(X)

If X is discrete random variable takes the values x_1, x_2, x_3 , ... x_n then sum_(i=1) P(x_i) = ........

If X be a random variable taking values x_(1),x_(2),x_(3),….,x_(n) with probabilities P_(1),P_(2),P_(3) ,….. P_(n) , respectively. Then, Var (x) is equal to …….. .

A random variable X takes the values 0,1,2,3,..., with prbability PX(=x)=k(x+1)((1)/(5))^x , where k is a constant, then P(X=0) is.

A random variable X takes values 0, 1, 2, 3,… with probability proportional to (x+1)((1)/(5))^x . P(Xge2) equals

A random variable X takes the values 0,1 and 2 .If P(X=1)=P(X=2) and P(X=0)=0.4 ,then the mean value of the random variable X is

The random variable X can take only the values 0;1;2. Giventhat P(X=0)=P(X=1)=p and that E(X^(2))=E(X); find the value of p.

A random variable X takes the value -1,0,1. It's mean is 0.6. If P(X=0)=0.2 then P(X=1)=

If x takes the value 2 , then the value of x+10 is