Home
Class 12
PHYSICS
The displacement of the interfaring ligh...

The displacement of the interfaring light waves are ` y_1 =4 sin omega t and y_2=3sin (omegat +(pi)/( 2)) ` What is the amplitude of the resultant wave?

A

5

B

7

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the amplitude of the resultant wave from the given wave equations, we can follow these steps: 1. **Identify the Amplitudes and Phase Difference**: The two waves are given as: - \( y_1 = 4 \sin(\omega t) \) (Amplitude \( A_1 = 4 \)) - \( y_2 = 3 \sin(\omega t + \frac{\pi}{2}) \) (Amplitude \( A_2 = 3 \)) The phase difference between \( y_1 \) and \( y_2 \) is \( \frac{\pi}{2} \) radians. 2. **Use the Resultant Amplitude Formula**: When two waves interfere, the resultant amplitude \( R \) can be calculated using the formula: \[ R = \sqrt{A_1^2 + A_2^2 + 2 A_1 A_2 \cos(\theta)} \] where \( \theta \) is the phase difference between the two waves. 3. **Substituting the Values**: Since the phase difference \( \theta = \frac{\pi}{2} \), we know that: \[ \cos\left(\frac{\pi}{2}\right) = 0 \] Therefore, the formula simplifies to: \[ R = \sqrt{A_1^2 + A_2^2} \] 4. **Calculating the Resultant Amplitude**: Substitute \( A_1 = 4 \) and \( A_2 = 3 \): \[ R = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \] 5. **Conclusion**: The amplitude of the resultant wave is \( R = 5 \).
Promotional Banner

Topper's Solved these Questions

  • WAVE MOTION

    TARGET PUBLICATION|Exercise MCQ 7.1|61 Videos
  • SURFACE TENSION

    TARGET PUBLICATION|Exercise EVALUATION TEST|21 Videos
  • WAVE THEORY OF LIGHT

    TARGET PUBLICATION|Exercise EVALUATION TEST|20 Videos

Similar Questions

Explore conceptually related problems

The displacements of two interfering light waves are y_(1) = 2sin omega t and y_(2) = 5sin (omega t+(pi)/(3)) the resultant amptitude is

The displacements of two intering lightwaves are y_(1) = 4 sin omega t and y_(2) = 3 cos(omega t) . The amplitude of the resultant wave is ( y_(1) and y_(2) are in CGS system)

The displacement of two interfering light waves are given by y_(1)=3 sinomegat,y_(2)=4 sin(omegat+pi//2) . The amplitude of the resultant wave is

If two waves represented by y_1=4sin omega t and y_2=3sin (omegat+pi/3) interfere at a point, the amplitude of the resulting wave will be about

If two waves represented by y_(1)=4 sin omega t and y_(2)=3sin (omega t+(pi)/(3)) interfere at a point, the amplitude of the resulting wave will be about

If two waves represented by y_(1)=4sinomegat and y_(2)=3sin(omegat+(pi)/(3)) interfere at a point find out the amplitude of the resulting wave

Two waves gives by y_(1)=10sinomegat cm and y_(2)=10sin(omegat+(pi)/(3)) cm are superimposed. What is the amplitude of the resultannt wave?

When two progressive waves y_(1) = 4 sin (2x - 6t) and y_(2) = 3 sin (2x - 6t - (pi)/(2)) are superimposed, the amplitude of the resultant wave is

two waves y_1 = 10sin(omegat - Kx) m and y_2 = 5sin(omegat - Kx + π/3) m are superimposed. the amplitude of resultant wave is

TARGET PUBLICATION-WAVE MOTION -MCQ 7.1
  1. The displacement of the interfaring light waves are y1 =4 sin omega ...

    Text Solution

    |

  2. A travelling wave passes a point of observation. At this point, the ti...

    Text Solution

    |

  3. When a wave travels in a medium displacement of a particle is given by...

    Text Solution

    |

  4. A wave is represented by the equation y = A sin(10pix + 15pit + (pi)...

    Text Solution

    |

  5. A transverse wave of amplitude 0.5 m and wavelength 1 m and frequency ...

    Text Solution

    |

  6. The equation of a wave is y=4 sin[(pi)/(2)(2t+(1)/(8)x)] where y ...

    Text Solution

    |

  7. The equation of a wave is y =4 sin {(pi)/(2) (2t +(x)/(8))} ,where y,x...

    Text Solution

    |

  8. The equation of a wave of amplitude 0.02 m and period 0.04 s travellin...

    Text Solution

    |

  9. The path difference between the two waves y(1)=a(1) sin(omega t-(2pi...

    Text Solution

    |

  10. The equation of a transverse travelling on a rope is given by y=10sinp...

    Text Solution

    |

  11. A wave motion has the function y=a0sin(omegat-kx). The graph in figure...

    Text Solution

    |

  12. The eqyation of wave is x= 5sin ((t)/( 0.4) -( x)/(4))cm the maximum...

    Text Solution

    |

  13. The equation of sound wave travelling along negative X-direction is gi...

    Text Solution

    |

  14. A progressive wave is represented by the equation y= 0.5 sin ( 314t- ...

    Text Solution

    |

  15. A wave of frequency 400 Hz has a phase velocity of 300 m/s The phase d...

    Text Solution

    |

  16. A prograssive wave of frequency 500 Hz is travelling with a speed of 3...

    Text Solution

    |

  17. If the speed of the wave shown in the figure is 330m//s in the given m...

    Text Solution

    |

  18. The equation of a wave is y=A sin (2pint) When it is reflected at a f...

    Text Solution

    |

  19. A bat flying above lake emits ultrasonic sound of 100 kHz ,When this w...

    Text Solution

    |

  20. Two waves are represented by y(1)= a sin (omega t + ( pi)/(6)) and y(...

    Text Solution

    |

  21. Two waves represented by the following equations are travelling in the...

    Text Solution

    |