Home
Class 12
MATHS
If x^2+y^2=t+1/t and x^4+y^4=t^2+1/(t^2...

If `x^2+y^2=t+1/t and x^4+y^4=t^2+1/(t^2)` then `(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) none of these

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) non of these

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) none of these

If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2 , then x^3y(dy)/(dx)=

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x^2 + y^2 = t -(1/t) and x^4 + y^4 = t^2 + (1/ t^2) , then show that x^3 y (dy/dx) = 1

If x^2 + y^2 = t + 1/t and x^4 + y^4 = t^2 + 1/t^2 , then show that dy/dx = -1/(x^3y)

if x^2+y^2 = t - 1/t and x^4 + y^4 = t^2 + 1/t^2 then prove that dy/dx = x^3y

If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =