Home
Class 12
MATHS
ABCD is a parallelogram with vec(AC)=ha...

ABCD is a parallelogram with `vec(AC)=hat i-2hat j+ hat k and vec (BC)=-hat i+2 hat j-5hat k`. Area of this parallelogram is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a= 4 hati- hat j-3hat k and vec b = -2 hat i+hat j+2 hat k are the two diagonals of a parallelogram, then find its area.

Find the area a parallelogram whose diagonals are vec a=3hat i+hat j-2hat k and vec b=hat i-3hat j+4hat k

Find the area a parallelogram whose diagonals are vec a=3 hat i+ hat j-2 hat k and vec b= hat i-3 hat j+4 hat kdot

The adjacent sides of a parallelogram are represented by the vectors vec a=hat i+hat j-hat k and vec b=-2hat i+hat j+2hat k Find unit vectors parallel to the diagonals of the parallelogram.

Find the area of the parallelogram whose diagonals are 2hat i+hat j and hat i+hat j+hat k

Find the area of a parallelogram whose diagonals are vec a=3 hat i+ hat j-2 hat k and vec b= hat i-3 hat j+4 hat kdot

Find the area of the parallelogram whose diagonals are: 2hat i+hat k and hat i+hat j+hat k

If vec AB=hat i-2hat j-6hat k,vec BC=2hat i-2hat j+hat kvec AC=hat i-3hat j-5hat k Then /_B equals

ABCD is a rhombus.If vec AC=hat i+(1+lambda)hat j+(lambda-2)hat k and vec BD=(2 lambda-1)hat i+hat j-hat k then lambda=

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?