Home
Class 11
MATHS
The inverse of the matrix A=|(1,1,1),(1,...

The inverse of the matrix `A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|,` where `omega=e(2pii)/3,` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The determinant of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

Let omega=-1/2+i(sqrt(3))/2 . Then the value of the determinant |(1,1,1),(1,-1-omega^2,omega^2),(1,omega^2,omega^4)| is (A) 3omega (B) 3omega(omega-1) (C) 3omega^2 (D) 3omega(1-omega)

Let omega=-1/2+i(sqrt(3))/2 . Then the value of the determinant |(1,1,1),(1,-1-omega^2,omega^2),(1,omega^2,omega^4)| is (A) 3omega (B) 3omega(omega-1) (C) 3omega^2 (D) 3omega(1-omega)

Find the value of : |(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)|

If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a

If omega is a complex cube root of unity , then the matrix A = [(1,omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a :

Let omega=-1/2+i(sqrt(3))/2, then value of the determinant [[1, 1, 1],[ 1,-1-omega^2,-omega^2],[1, omega^2,omega^4]] is (a) 3omega (b) 3omega(omega-1) (c) 3omega^2 (d) 3omega(1-omega)