Home
Class 9
MATHS
(a-b)^3+(b-c)^3+(c-a)^3...

`(a-b)^3+(b-c)^3+(c-a)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (a-2b)^3+(2b-c)^3+(c-a)^3 =3(a-2b)(2b-c)(c-a)

Factorize: (a-3b)^3+(3b-c)^3+(c-a)^3

Resolve into factors : (a-2b)^3+(2b-c)^3+(c-a)^3

Factorise (a-2b)^3+(2b-3c)^3+(3c-a)^3

Factorize: (3a-2b)^3+(2b-5c)^3+(5c-3a)^3

(3a-2b)^3+(2b-5c)^3+(5c-3a)^3

11. If a, b,c in R-{0}, such that a!=b!=c, then the matrix [[0,(a-b)^3,(a-c)^3],[(b-a)^3,0,(b-c)^3],[[c-a)^3,(c-b)^3,0]] is (A) symmetric (B) singular (C) non-singular (D) invertible

Factorize: (a-3b)^(3)+(3b-c)^(3)+(c-a)^(3)

Prove (a+2b)^3+(b+2c)^3+(c+2a)^3+3(a+3b+2c)(b+3c+2a)(c+3a+2b)=27(a+b+c)^3

Prove that (b+c-a)^3+(c+a-b)^3+(a+b-c)^3-(a+b+c)^3+108abc = 84abc