Home
Class 12
MATHS
logx(log9(3^x-9))<1...

`log_x(log_9(3^x-9))<1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x satisfies the equation log_(3)(log_(9)x)=log_(9)(log_(3)x) then the product of the digits in x is

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve the following equation : log_3 x+log_9 (x^2)+log_27 (x^3)=3

The sum of all the solution(s) of the equation (log_(9x)3)(log_((x)/(9))3)=log_((x)/(81))3 is equal to

If 9^("log"_3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

log_(3)(log_(9)x+(1)/(2)+9^(x))=2x

log_(3)(log_(9)x+(1)/(2)+9^(x))=2x