Home
Class 7
MATHS
(-1)^(301)+(-1)^(302)+(-1)^(303)+ ....+(...

`(-1)^(301)+(-1)^(302)+(-1)^(303)+` ....`+(-1)^(400)` (b) 101 100 (d) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

(-1) ^101+(-1)^100 =

Find the value of (-1)^(301)+(-1)^(302)+(-1)^(303)+.......+(-1)^(400) .

The simplified value of (1+(1)/(1+(1)/(100)))(1+(1)/(1+(1)/(100)))-(1-(1)/(1+(1)/(100)))(1-(1)/(1+(1)/(100))) (a) 100( b) (200)/(101) (c) 200 (d) (202)/(100)

The rational numbers lying between (1)/(3) and (3)/(4) are (117)/(300),(287)/(400) (b) (95)/(300),(301)/(400) (c) (99)/(300),(301)/(400) (d) (97)/(300),(299)/(500)

[(1+(1)/(10+(1)/(10)))(1+(1)/(10+(1)/(10)))-(1-(1)/(10+(1)/(10)))(1-(1)/(10+(1)/(10)))] simplifies to (20)/(101) (b) (90)/(101) (c) (100)/(101) (d) (101)/(100)

(25.025)/(0.025) is equal to (a) 1.01 (b) 10.1(c)101 (d) 1001

Let S_(n)=1+q+q^(2)+?+q^(n) and T_(n)=1+((q+1)/(2))+((q+1)/(2))^(2)+?+((q+1)/(2)) If alpha T_(100)=^(101)C_(1)+^(101)C_(2)xS_(1)+^(101)C_(101)xS_(100), then the value of alpha is equal to (A) 2^(99)(B)2^(101)(C)2^(100) (D) -2^(100)

Arrange the following matrices in ascending order of value of their trace. (A) [(1,0,0),(0,1,0),(0,0,1)] (B) [(2,3,1),(1,-1,2),(3,0,1)] (C ) [(3,4),(1,5)] (D) [(-2,1),(3,8)]

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then which is true (a) A^(3)-A^(2)=A-I (b) det. (A^(100)-I)=0 (c) A^(200)=[(1,0,0),(100,1,0),(100,0,1)] (d) A^(100)=[(1,1,0),(50,1,0),(50,0,1)]