Home
Class 12
MATHS
The circles x^2 + y^2 + 2ux + 2vy = 0 an...

The circles `x^2 + y^2 + 2ux + 2vy = 0 and x^2 + y^2 + 2u_1 x + 2v_1 y = 0` touch each other at `(1, 1)` if : (A) `u + u_1 = v + v_1` (B) `u + v = v_1 + u_1` (C) `u/u_1 = v/v_1` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the circles x^2+y^2+24ux+2vy=0 and x^2+y^2+2u_1x+2v_1y=0 touch each other externally if -12u_1u=v_1v .

Prove that the circles x^2+y^2+24ux+2vy=0 and x^2+y^2+2u_1x+2v_1y=0 touch each other externally if -12u_1u=v_1v .

If 3u + 4v =10 nd S_u = 1.2 . then Var (v) = 0.81

Let y = uv be the product of the functions u and v . Find y'(2) if u(2) = 3, u'(2) = – 4, v(2) = 1, and v'(2) = 2.

Let y = uv be the product of the functions u and v . Find y'(2) if u(2) = 3, u'(2) = – 4, v(2) = 1, and v'(2) = 2.

If (u^2+v^2) prop (x^2 +y^2 ) and uv prop xy then show that (u+v) prop (x+y) when u/v+v/u=x/y +y/x .

W(x,y,z) = xy + yz + zx, x = u - v, y = uv, z = u + v, u, v in R. Find (del w)/(del u) , (del w)/(del v) and evaluate then at ((1)/(2), 1) .

If u and v are the roots of the equation x^2+2x-2=0 , then the value of log_2(u^2+v^2)-log_2u^2-log_2v^2 is 2 (2) -1 (3) 1 (4) 0 (5) -2