Home
Class 11
MATHS
[" The points "O,A,B,C,D" are such that ...

[" The points "O,A,B,C,D" are such that "],[bar(OA)=bar(a),bar(OB)=bar(b),bar(OC)=2bar(a)+3bar(b)],[" and "bar(OD)=bar(a)-2bar(b)*" If "|bar(a)|=3|bar(b)|," then the "],[" angle between "bar(BD)" and "bar(AC)" is "],[[" 1) "pi," 2) "(pi)/(2)," 3) "(pi)/(3)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The p oints O, A, B, C, D are such that bar(OA)= bar a,bar(OB) = bar b,bar(OC) = 2bar a + 3bar b and bar(OD) = bar a- 2 bar b if |bar a|=|3 bar b| then the angle between bar(BD) and bar(AC) is (A) pi (B) pi/2 (C) pi/3 (D) pi/6

If |bar(a).bar(b)|=3 and |bar(a)xx bar(b)|=4 then the angle between bar(a) and bar(b) is ………………

If |bar(a).bar(b)| = |bar(a) xx bar(b)| & bar(a). bar(b) lt 0 , then find the angle between bar(a) and bar(b) .

if bar(a) + bar(b) + bar(c ) = bar(0), |bar(a)| = 3, |bar(b)| = 5, |bar(c )| = 7 then find angle between bar(a) , bar(b) .

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

bar(b)=bar(i)-2bar(j)-3bar(k),bar(b)=2bar(i)+bar(j)-bar(k),bar(c)=bar(i)+ 3bar(j)-2bar(k) then bar(a).(bar(b)xxbar(c))

If bar(a) and bar(b) be non collinear vectors such that |bar(a)times bar(b)|=bar(a).bar(b) then the angle between bar(a) and bar(b) is