Home
Class 11
MATHS
If |Z-4/Z|=2 then maximum value of |Z| i...

If `|Z-4/Z|=2` then maximum value of `|Z|` is equal to

Text Solution

Verified by Experts

`|z| = |z-4/z + 4/z| `
`<= |z-4/z| + |4/z|`
`|z| <= 2 + 4/|z| `
`=> |z| - 2 - 4/|z| <= 0`
`(|z|^2 - 2|z| -4)/|z| <= 0 `
roots are `|z = +- 2 + - (sqrt(4 +16))/2`
`= 1 +- sqrt5 `
`0 <= |z| <= 1 + sqrt5 `
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-4/z|=2 , then the maximum value of |Z| is equal to (1) sqrt(3)+""1 (2) sqrt(5)+""1 (3) 2 (4) 2""+sqrt(2)

If |z-4/z|=2 , then the maximum value |z| is equal to

If |z-(4)/(z)|=2, then the maximum value of |Z| is equal to (1)sqrt(3)+1 (2) (3) 2(4)quad 2+sqrt(2)

If |z-(4)/(z)|=2 then the maximum value of |z| is

If |z+4|<=3 then the maximum value of |z+1| is

If |z-(4)/(z)|=2, then the maximum value of |z|