Home
Class 11
MATHS
" Lt "(sin(x-pi/6))/(sqrt(3)/2-cos x)=...

" Lt "(sin(x-pi/6))/(sqrt(3)/2-cos x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_( x to pi//6) (sin (x - pi/6))/(sqrt(3)/2 - cos x )

lim_ (x rarr (pi) / (6)) (sin (x- (pi) / (6))) / (sqrt (3) -cos x)

(i) lim_(x to (pi)/(2)) (1+cos 2x)/((pi-2x)^(2)) (ii) lim_( x to 0) (1-cos x.sqrt(cos 2x))/(x^(2)) (iii) lim_(thetararr(pi)/(6)) (sin(theta-(pi)/(6)))/(sqrt(3)-2 cos theta)

lim_(x rarr pi/6)(sqrt(3)sin x-cos x)/(x-(pi)/(6))

lim_ (x rarr (pi) / (6)) (2-sqrt (3) cos x-sin x) / ((6x-pi) ^ (2))

lim_ (x rarr (pi) / (6)) (3sin x-sqrt (3) cos x) / (6x-pi)

If e^(( cos^2 x + cos^4x+ cos ^6 x + ……..oo ) log_e 2) satisfies the equation t^2 - 9t + 8=0 , then the value of ( 2 sin x)/( sin x + sqrt(3) cos x) ( 0 lt x lt (pi)/(2)) is

If cos (pi/12) = (sqrt(2) + sqrt(6))/(4) , then all x in (0,pi/2) such that (sqrt(3)-1)/(sin x) + (sqrt(3)+1)/(cos x) = 4sqrt(2) , then find x.

If cos (pi/12) = (sqrt(2) + sqrt(6))/(4) , then all x in (0,pi/2) such that (sqrt(3)-1)/(sin x) + (sqrt(3)+1)/(cos x) = 4sqrt(2) , then find x.

Evaluate int_(pi/6)^(pi/3) sqrt(sin x)/(sqrt(sin x)+sqrt(cos x)) d x