Home
Class 12
MATHS
cos^(-1)(4)/(5)+tan^(-1)(3)/(5)=...

cos^(-1)(4)/(5)+tan^(-1)(3)/(5)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)((4)/(5))=tan^(-1)((3)/(4))

Which of the following is/are correct? tan[cos^(-1)(4)/(5)+tan^(-1)(2)/(3)]=(17)/(6)cos[tan^(-1)(1)/(3)+tan^(-1)(1)/(2)]=(1)/(sqrt(2))cos2tan^(-1)((1)/(3))+cos(tan^(-1)2sqrt(2))=(14)/(15)cos[2cos^(-1)(1)/(5)+sin^(-1)(1)/(5)]=-(2sqrt(6))/(6)

tan(cos^(-1)((4)/(5))+tan^(-1)((2)/(3)))=

tan [cos^(-1)((4)/(5)) +tan ^(-1)((2)/(3))]=....

Prove the following results: tan((cos^(-1)4)/(5)+(tan^(-1)2)/(3))=(17)/(6)(ii)cos((sin^(-1)3)/(5)+(cot^(-1)3)/(2))=(6)/(5sqrt(13))

If tan {cos^(-1)((4)/(5))+tan^(-1)((2)/(3))}=(a)/(b) , where a and b are co-prime natural numbers, then:

Prove the following results: tan(cos^(-1)((4)/(5))+tan^(-1)((2)/(3)))=(17)/(6)

If the numerical value of tan{cos^(-1)((4)/(5))+tan^(-1)((2)/(3))}_( is )(a)/(b) then

The value of tan["cos"^(-1)(4)/(5)+"tan"^(-1)(2)/(3)] is equal to