Home
Class 12
MATHS
" (3) "(u)/(x-sigma)(e^(1/x)-e^(-1/x))/(...

" (3) "(u)/(x-sigma)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))=?

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))

Let f(x)=g(x)(e^(1//x) -e^(-1//x))/(e^(1//x) + e^(-1//x)) , where g is a continuous function then lim_(x to 0) f(x) exist if

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(-1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

Let f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)+e^(-1/x)),x!=0 and f(0)=1 then-

f(x) = x [(e^(1//x) - e^(-1//x))/(e^(1//x) + e^(-1//x))] , (x ne 0)= 0 then f(x) is

underset(x to oo)"Lt" (e^(1//x)-e^(-1//x))/(e^(1//x)+e^(-1//x))=