Home
Class 12
MATHS
lt(x rarr oo)(x^(5))/(5^(x))=...

lt_(x rarr oo)(x^(5))/(5^(x))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x rarr oo)(x^(3))/(e^(x))

1.The value of lim_(x rarr oo)(x^(5))/(5^(x)) is

lim_(x rarr oo)(x^(5))/(5^(x) is

For x>0,Ltx^((1)/(x))+Lt_(x rarr oo)x^((1)/(x))=

If f(0)=3 then Lt_(x rarr oo)(x^(2))/(f(x^(2))-6,f(4x^(2))+5.f(7x^(2)))

Evaluate: lim_(x rarr oo) [(4x^(n)+1)/(5x^(n)+5)] .

Let f:rarr R rarr(0,oo) be strictly increasing function such that lim_(x rarr oo)(f(7x))/(f(x))=1 .Then, the value of lim_(x rarr oo)[(f(5x))/(f(x))-1] is equal to

lim_(x rarr oo)(4^(x+1)+5^(x))/(7^(x)+8^(x))=

2. Lt_(x rarr oo)(x)/(1+x)

Lt_(x rarr oo)((ax^(2)-2)/(3x+1)-bx)=2 then a+b=...