Home
Class 12
MATHS
If f(x) = x + tanx and g(x) is inverse o...

If `f(x) = x + tanx and g(x)` is inverse of `f(x)` then `g'(x)` is equal to (1) `1/(1+(g(x)-x)^2)` (2) `1/(1-(g(x)-x)^2)` (3) `1/(2+(g(x)-x)^2)` (4) `1/(2-(g(x)-x)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+tan x and f(x) is inverse of g(x), then g'(x) is equal to (1)/(1+(g(x)-x)^(2)) (b) (1)/(1+(g(x)+x)^(2))(1)/(2-(g(x)-x)^(2)) (d) (1)/(2+(g(x)-x)^(2))

If f(x)=2x+tan x and g(x) is the inverse of f(x) then value of g'((pi)/(2)+1) is

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to- (1)/(4)(b)0 (c) (1)/(3)(d)4

If f(x)=x+tanx and g(x) is the inverse of f(x), then differentiation of g(x) is (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)+x]^2) (c) 1/(2+[g(x)-x]^2) (d) none of these

If f(x)=x+tanxa n df is the inverse of g, then g^(prime)(x) equals (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)-x]^2) (c) 1/(2+[g(x)-x]^2) (d) none of these

If f(x)=x+tanx and g(x) is the inverse of f(x) , then differentiation of g(x) is (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)+x]^2) (c)1/(2+[g(x)-x]^2) (d) none of these

If f(x)=x+tanx and g(x) is the inverse of f(x) , then differentiation of g(x) is (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)+x]^2) (c)1/(2+[g(x)-x]^2) (d) none of these

If f(x)=x+ tan x and f is the inverse of g then g'(x) equals (a) (1)/(1+[g(x)-x]^(2))(b)(1)/(2-[g(x)-x]^(2))(c)(1)/(2+[g(x)-x]^(2))(d) none of these

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4