Home
Class 12
MATHS
[" If "f(x)=int(b)^(x)(1)/(f(t))dt" and ...

[" If "f(x)=int_(b)^(x)(1)/(f(t))dt" and "int_(b)^(1)(1)/(f(x))dx=sqrt(2)," then the "],[" shape of curve of function "f(x)" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x){f(t)}^(-1)dt and int_(0)^(1){f(t)}^(-1)=sqrt(2)

If f(x) =int_(0)^(x) {f(t)}^(-1)dt, " and " int_(0)^(1) {f(t}^(-1)dt=sqrt(2) , then f(x)=

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))

If f(x)=int_a^x[f(x)]^(-1)dx and int_a^1[f(x)]^(-1)dx=sqrt(2) , then

If f(x)=int_a^x[f(x)]^(-1)dx and int_a^1[f(x)]^(-1)dx=sqrt(2) , then

If f(x)=int_(0)^(x)(dt)/((f(t))^(2)) and int_(0)^(2)(dt)/((f(t))^(2))=(6)^((1)/(3)) then

If f(x)=int_0^x{f(t)}^(- 1)dt and int_0^1{f(t)}^(- 1)=sqrt(2), then

If f(x)=int_0^x{f(t)}^(- 1)dt and int_0^1{f(t)}^(- 1)=sqrt(2), then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to