Home
Class 12
MATHS
|[3-lambda,-1,1],[-1,5-lambda,-1],[1,-1,...

|[3-lambda,-1,1],[-1,5-lambda,-1],[1,-1,3-lambda]|=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of lambda for which 3-lambda,-1,1-1,5-lambda,-11,-1,3-lambda]|=0

A=[[2-lambda,-1,0-1,2-lambda,-10,-1,2-lambda]] then find out

For a non zero " lambda" ,the value of matrix "[[lambda,1,0],[0,lambda,1],[0,0,lambda]]^(n) " is equal to

If the rank of the matrix [(lambda,-1,0),(0, lambda,-1),(-1,0,lambda)] is 2, then find lambda .

If |[lambda^(2)+3 lambda,lambda-1,lambda+3],[lambda+1,2-lambda,lambda-4],[lambda-3,lambda+4,3 lambda]|=p lambda^(4)+q lambda^(3)+r lambda^(2)+s lambda+t then t=

If |[lambda^(2),-lambda,2 lambda-1],[lambda+2,1-lambda,lambda],[lambda+2,lambda+1,-lambda]|=a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e Then values of a, b, c, d and e are.

Let plambda^(4)+qlambda^(3)+rlambda^(2) + slambda+t= |{:(lambda^(2)+3lambda,,lambda-1,,lambda+3),(lambda+1 ,,-2lambda,,lambda-4),(lambda-3,,lambda+4,,3lambda):}| be an indentity in lambda p,q, r s and r are constants. Then find the value of t.

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=