Home
Class 14
MATHS
((2^(n)+2^(n-1)))/((2^(n+1)-2^(n)))bar("...

((2^(n)+2^(n-1)))/((2^(n+1)-2^(n)))bar(" an ")bar(417)

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide x^(2n)+a^(2^(n-1))x^(2^(n-1))+a^(2^(n))byx^(2^(n-1))-a^(2^(n-2))x^(2^(n-2))+a^(2^(n-1))

lim_(x rarr oo)((2^(x^(n)))^(e^((1)/(T)))-(3^(x^(n)))^((1)/(e^(bar(T)))))/(x^(n))

If A=([x,x],[x,x]) then A^(n)(n in N)= 1) ([2^nx^n,2^nx^n],[2^nx^n,2^nx^n]) 2) ([2^(n-1) x^n,2^(n-1) x^n],[2^(n-1) x^n,2^(n-1) x^n]) 3) I 4) ([2^(n) x^(n-1),2^(n) x^(n-1)],[2^(n) x^(n-1),2^(n) x^(n-1)])

The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to

Show : 2^(n)-(n)/(1!).2^(n-1)+(n(n-1))/(2!).2^(n-2)-....+(-1)^(n)=1

Lt_(n rarr oo)[(1+(1)/(n^(2)))^((2)/(n^(2)))(1+(2^(2))/(n^(2)))^((4)/(n^(2)))(1+(3^(2))/(n^(2)))^((6)/(n^(2))).....(1+(n^(2))/(n^(2)))^((2n)/(n^(2)))]

Lim {x rarr oo} {(1+ (1) / (n ^ (2))) ^ ((2) / (n ^ (2))) (1+ (4) / (n ^ (2)) ) ^ ((4) / (n ^ (2))) ...... (1+ (n ^ (2)) / (n ^ (2))) ^ (2 (n) / (n ^ (2)))}

Evaluate lim_(ntooo) n^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))...(n+2^(-n+1))]^(n) .

Evaluate lim_(ntooo) n^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))...(n+2^(-n+1))]^(n) .

Evaluate: ("lim")_(nvecoo)n^(-n^2){(n+2^0)(n+2^(-1))(n+2^(-2))(n+2^(-n+1))}^n