Home
Class 10
MATHS
tan^(-1)((c(1)x-y)/(c(1)y+x))+tan^(-1)((...

tan^(-1)((c_(1)x-y)/(c_(1)y+x))+tan^(-1)((c_(2)-c_(1))/(1+c_(2)c_(1)))+...+tan^(-1)((1)/(c_(n)))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If c_(j)>0 for i=1,2,......,n prove that tan^(-1)((c_(1)x-y)/(c_(1)y+x))+tan^(-1)((c_(2)-c_(1))/(1+c_(2)c_(1)))+tan^(-1)((c_(3)-c_(2))/(1+c_(3)c_(2)))+......+(tan^(-1)1)/(c_(n))=tan^(-1)((x)/(y))

Tan^(-1)((c_(1)x-y)/(c_(1)y+x))+Tan^(-1)((c_(2)-c_(1))/(1+c_(2)c_(1)))+Tan^(-1)((c_(3)-c_(2))/(1+c_(3)c_(2)))+…+Tan^(-1)(1/c_(n))=

tan^(-1)[(C_(1)x-y)/(c_(1)y+x)]+tan^(-1)[(C_(2)-C_(1))/(1+C_(1)C_(2))]..+tan^(-1)[(1)/(c_(n))] is equal to

"Tan"^(-1)(c_(1)x-y)/(c_(1)y+x)+"Tan"^(-1)(c_(2)-c_(1))/(1+c_(2)c_(1))+"Tan"^(-1)(c_(3)-c_(2))/(1+c_(3)c_(2))+..."Tan"^(-1)1/c_(n)=

If c_i >0 for i=1,\ 2,\ ,\ n , prove that tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+\ dot+ tan^(-1)(1/(c_n)) = tan^(-1)(x/y)

If c_i >0 for i=1,2,....., n prove that tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+.........+ tan^(-1)(1/(c_n))=tan^(-1)(x/y)

If c_j >0 for i=1,2,..., n , prove that tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+...+tan^(-1)(1/(c_n))=tan^(-1)(x/y)

If c_i >0 for i=1,\ 2,\ ,\ n , prove that tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+\ dot+tan^(-1)(1/(c_n))=tan^(-1)(x/y)

tan^(-1)(C_(1)x-y)/(c_(1)+c_(3)c_(2))+..+tan^(-1)(1)/(c_(n)) is equal top

Prove that: tan^-1((c_1x-y)/(c_1y+x))+tan^-1((c_2-c_1)/(1+c_2c_1))+tan^-1((c_3-c_2)/(1+c_3c_2)) + .......+tan^-1((c_n-c_(n-1))/(1+c_nc_(n-1)))+tan^-1(1/c_n)=tan^-1(x/y)