Home
Class 12
MATHS
[" 2.Show that the condition for the lin...

[" 2.Show that the condition for the line "lx+my+n=0" to be a nomaltotic "],[(x^(2))/(a^(2))+(y^(2))/(b^(2))=1" is "(a^(2))/(l^(2))+(b^(2))/(m^(2))=((a^(2)-b^(2))^(2))/(n^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

The line lx+my+n=0 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. then prove that (a^(2))/(l^(2))+(b^(2))/(m^(2))=((a^(2)-b^(2))^(2))/(n^(2))

If the line lx+my=1 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then (a^(2))/(l^(2))+(b^(2))/(m^(2))=

The condition that the line lx + my + n= 0 to be a normal to the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2))= 1 is

If the straight line lx+my=n is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 show that (a^(2))/(l^(2))-(b^(2))/(m^(2))=((a^(2)+b^(2))^(2))/(n^(2)) .

The line lx+my=n is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

The line lx + my + n = 0 is a normal to (x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 , provided

Find the condition for the line lx+my+n=0 to be a normal to the ellipse x^2/a^2+y^2/b^2=1