Home
Class 9
MATHS
If a^x = b^y = a^z and a^3 = b^2 c, ...

If `a^x = b^y = a^z` and `a^3 = b^2 c`, then `3/x - 2/y =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : x - y +z

If x = 10a, y = 3b , z = 7c and x : y : z = 10 : 3 : 7 , then (7x + 2y + 5z)/(8a + b + 3c) =

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : 2x - y - 3z

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : x + y + z

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : 3y - 2z - 5x

If x = b + c - 2a, y = c + a-2b , z = a + b-2c , then prove that x^3+y^3+z^3-3xyz=0