Home
Class 11
PHYSICS
Vector product of three vectors is given...

Vector product of three vectors is given by `vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B))`
The plane of vector `vec(A)xx(vec(A)xxvec(B))` lies in the plane of

Promotional Banner

Similar Questions

Explore conceptually related problems

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The value of hat(i)xx(hat(j)xxhat(k)) is

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The value of hat(i)xx(hat(j)xxhat(k)) is

If vec(d)=vec(a)xx(vec(b)xxvec(c))+vec(b)xx(vec(c)xxvec(a))+vec(c)xx(vec(a)xxvec(b))," then "

For any three vectors vec(a), vec(b) and vec(c) , evaluate vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) .

If vec(a),vec(b),vec(c) are the non-coplanar vectors, then (vec(a).vec(b)xxvec(c))/(vec(c)xxvec(a).vec(b))+(vec(b).vec(a)xxvec(c))/(vec(c).vec(a)xxvec(b))= ……………

If vec(a),vec(b),vec(c) are coplanar vectors, show that (vec(a)xxvec(b))xx(vec(c)xxvec(d))=vec(0)