Home
Class 12
MATHS
If f(x)=9-sinx+x^2 then at x=pi...

If `f(x)=9-sinx+x^2` then at `x=pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=2sinx-x^(2) , then in x in [0, pi]

If f(x)=2sinx-x^(2) , then in x in [0, pi]

If f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx .

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If f(x)=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx),forx in (pi/4,pi/2) (b) cosx+sinx ,forx in (0,pi/4) (c) -(cosx+sinx),forx in (0,pi/4) (d) cosx-sinx ,forx in (pi/4,pi/2)

If f(x)=cos(sinx^2) , then f'(x) at x=sqrt(pi/2) is

if f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .