Home
Class 12
MATHS
" Let "lim(x rarr0)([x]^(2))/(x^(2))=l" ...

" Let "lim_(x rarr0)([x]^(2))/(x^(2))=l" and "lim_(x rarr0)([x^(2)])/(x^(2))=m," where "[*]" denotes greatest integer.Then,"

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(x^(2)-1)/(x^(2))

. lim_(x rarr0)(x^(2))/(sin x^(2))

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(x)-1)/(x)

lim_(x rarr0)(tan^(-1)a)/(x^(2))

lim_(x rarr0)(x^(2))/(1-cos x)

lim_(x rarr0)(1-cos x)/(x^(2))

lim_(x rarr0)(sec x-1)/(x^(2))

lim_(x rarr0)(cos x)^(1/x^(2))

lim_(x rarr0)[sin x]