Home
Class 11
MATHS
[" 59) (xsipt "ABC" ui,"a^(2)(cos^(2)B-c...

[" 59) (xsipt "ABC" ui,"a^(2)(cos^(2)B-cos^(2)C)+],[b^(2)(cos^(2)C-cos^(2)A)+c^(2)(cos^(2)A-cos^(2)B)]

Promotional Banner

Similar Questions

Explore conceptually related problems

a^(2)(cos^(2)B-cos^(2)C)+b^(2)(cos^(2)C-cos^(2)A)+c^(2)(cos^(2)A-cos^(2)B)=0

(iv) a^(2)(cos^(2) B - cos^(2)C) + b^(2) (cos^(2) C- cos^(2)A) + c^(2) (cos^(2)A- cos^(2)B)=0

In any Delta ABC, prove that :a^(2)(cos^(2)B-cos^(2)C)+b^(2)(cos^(2)C-cos^(2)A)+c^(2)(cos^(2)A-cos^(2)B)=0

a^2(cos^2B-cos^2C)+b^2(cos^2C-cos^2A)+c^2(cos^2A-cos^2B)=0 .

In /_\ABC prove that a^2(cos^2B-cos^2C)+b^2(cos^2C-cos^2A)+c^2(cos^2A-cos^2B) = 0

In Delta ABC prove that a^2(cos^2B - cos^2C) + b^2(cos^2C - cos^2A) + c^2(cos^2A - cos^2B) = 0

In any triangle ABC, prove that following: (cos^(2)B-cos^(2)C)/(b+c)+(cos^(2)C-cos^(2)A)/(c+a)+(cos^(2)A-cos^(2)B)/(a+b)=0

In a triangle ABC,cos^(2)A+cos^(2)B+cos^(2)C=

In a Delta ABC,a(cos^(2)B+cos^(2)C)+cos A(c cos C+b cos B)=

In any triangle A B C , prove that following: \ (cos^2B-cos^2C)/(b+c)+(cos^2C-cos^2A)/(c+a)+(cos^2A-cos^2B)/(a+b)=0