Home
Class 10
MATHS
underset(x rarr oo)("lim")(n(n+1))/(n^(2...

`underset(x rarr oo)("lim")(n(n+1))/(n^(2))=`________.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) (n(n+1))/(n^(2))= ________.

Compute the limit A = underset(n rarr oo)("lim") (root(n)(n!))/(n)

Find underset( n rarr oo )("lim") ( ( 2 n^(3))/( 2n^(2) + 3)- ( 1+ 5n^(2) )/( 5n + 1))

Solve underset( n rarr oo)("lim") x_(n) , when x_(n)^(2) = a+ x_(n-1) and x_(0) = sqrt( a)

underset(n to oo)lim (1+2+3+...+n)/(n^(2))=

underset(n to oo)lim (2^(n)-n)/(2^(n))=

underset(n to oo)lim (2^(n)-1)/(3^(n)+1)=

underset(n to oo)lim (5^(n)+1)/(3^(n)-1)=

lim_(x rarr oo) (x^(n)+a^(n))/(x^(n)-a^(n))= ________.

lim_(n rarr oo) (1)/(n)= ________.