Home
Class 11
MATHS
" 9."1+4+10+19+......+(3n^(2)-3n+2)/(2)=...

" 9."1+4+10+19+......+(3n^(2)-3n+2)/(2)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Using mathematical induction prove that 1/(1.4)+1/(4.7)+1/(7.10)+.......+1/((3n-2)(3n+1))=n/(3n+1) for all n in N

P(n) : 1^(2) + 2^(2) + 3^(2) + .......+ n^(2) = n/6(n+1) (2n+1) n in N is true then 1^(2) +2^(2) +3^(2) + ........ + 10^(2) = .......

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.4)+ (1)/(4.7)+(1)/(7.10)+...+ (1)/((3n-2)(3n+1))= (n)/(3n+1)

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.4)+ (1)/(4.7)+(1)/(7.10)+...+ (1)/((3n-2)(3n+1))= (n)/(3n+1)

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.4)+ (1)/(4.7)+(1)/(7.10)+...+ (1)/((3n-2)(3n+1))= (n)/(3n+1)

Prove, by method of induction, for all n in N : 1^2 + 4^2 + 7^2 +...+ (3n - 2)^2 = n/2 (6n^2 - 3n - 1)

Prove the following by the principle of mathematical induction: 1/(1. 4)+1/(4. 7)+1/(7. 10)+....+1/((3n-2)(3n+1))=n/(3n+1)

1.3+2.3^(2)+3.3^(3)+............+n.3^(n)=((2n-1)3^(n+1)+3 )/(4)

Lt_(ntooo)([1+4+9+......+n^(2)])/(n^(3))