Home
Class 12
MATHS
A = [[2,-1],[-7,4]] & B =[[4,1],[7,2]] ...

`A = [[2,-1],[-7,4]] & B =[[4,1],[7,2]]` then `B^TA^T` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[2,3],[-1,4]] and B=[[3,0],[-1,7]] then the value of (A+B)^(T) is

.If A=[[1,4,7],[2,5,8]] and B=[[-3,4,0],[4,-2,-1]] then show that (A+B)^T=A^T+B^T

if A = [[3,9,0],[1,8,-2]] and B = [[4,0,2],[7,1,4]] find A+B and A-B?

If A=[[7,-2],[-1,2],[5,3]] and B=[[-2,-1],[4,2],[-1,0]] then find AB^(T) and BA^(T)

If A=[[2,-1],[3,-2],[4,1]] and B=[[0,3,-4],[2,-1,1]] ,verify that (AB)^T=B^TA^T

Let A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] Show that (AB)^T=B^TA^T

If A=[[2,-3],[-4,7]] and B=[[8,-2],[3,-1]] ,verify that (AB)^(t)=B^(t)A^(t)

Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7,-2]] (ii) [[-4,-1],[7,-2]] (iii) [[4,-1],[7,2]] (iv) [[4,-1],[-7,2]]

Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7,-2]] (ii) [[-4,-1],[7,-2]] (iii) [[4,-1],[7,2]] (iv) [[4,-1],[-7,2]]

Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7,-2]] (ii) [[-4,-1],[7,-2]] (iii) [[4,-1],[7,2]] (iv) [[4,-1],[-7,2]]