Home
Class 12
MATHS
If f(x)=x-x^2+x^3-x^4+....oo, |x| lt 1 t...

If `f(x)=x-x^2+x^3-x^4+....oo, |x| lt 1` then `f'(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x-x^2+x^3-x^4+... where |x| lt 1 , then: f^-1(x)=

If f(x)=x-x^(2)+x^(3)-x^(4)+….oo when |x| lt 1 then f^(-1)(x)=

If f(x)=1+x+x^(2)+x^(3)+...oo for |x|<1 then f^(-1)(x)=

If f(x)=|x-1|+|x-2|+|x-3|,2 lt x lt 3 , then f is

If f(x)=1+x^(2)+x^(4)+x^(6)+…..oo then int_(0)^(x)f(x)dx=

If f(x)=max{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x > 0 f(x) = { 1/(64), 0 lt= x lt = 1/4 x^2, 1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

If f(x)=max{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x > 0 f(x) = { 1/(64), 0 lt= x lt = 1/4 x^2, 1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

Let f(x) = (x^2 - 4)/(x^2 + 4) , for |x| > 2 , then the function f: (-oo , -2] cup [2, oo) to (-1,1) is :