Home
Class 12
MATHS
Statement I int(pi/6)^(pi/3)1/(1+tan^3x)...

Statement I `int_(pi/6)^(pi/3)1/(1+tan^3x)` is `pi/12` Statement II `int_a^bf(x)dx=int_a^bf(a+b-x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I int_((pi)/(6))^((pi)/(3))(1)/(1+tan^(3)x) is (pi)/(12) statement II int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

int_(pi//6)^(pi//3)(1)/(1+tan^(3)x)dx is

int_(pi//6)^(pi//3)(1)/(1+tan x) dx=

Statement 1: The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to pi/6 Statement 2: int_a^bf(x)dx=int_a^bf(a+b-x)dxdot Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

int_(pi//6)^(pi//3)(1)/(1+tan^(3)x)dx=

Statement - I : The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to pi/6 . Statement - II : int_a^bf(x)dx=int_a^bf(a+b-x)dxdot (1) Statement - I is True; Statement -II is true; Statement-II is not a correct explanation for Statement-I (2) Statement -I is True; Statement -II is False. (3) Statement -I is False; Statement -II is True (4) Statement -I is True; Statement -II is True; Statement-II is a correct explanation for Statement-I

int_(pi//6)^(pi//3) sin(3x)dx=

int_(pi//6)^(pi//3) sin(3x)dx=

Statement - 1 : The value of the integral int_(pi/6)^(pi/3) dx/(1 + sqrttanx) is equal to pi/6 Statement-2 : int_a^b f(x) = int_a^b f(a + b - x) dx

Statement I The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tan x)) is pi/6 Statement II int_(a)^(b) f(x) dx = int_(a)^(b) f(a+b-x)dx