Home
Class 12
MATHS
If int(ln2)^x(dt)/(sqrt(e^t-1))=pi/6, t...

If `int_(ln2)^x(dt)/(sqrt(e^t-1))=pi/6`, then `x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

If int_(1)^(x)(dt)/(|t|sqrt(t^(2)-1))=(pi)/(6) then x can be equal to

int_(log2)^(t)(dx)/(sqrt(e^(x)-1))=(pi)/(6) , then t=

If int(log 2)^(x) (dy)/(sqrt(e^(y) -1)) = (pi)/(6) , prove that x = log 4

If int_(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6) , then x can be equal to :

The solution for x of the equation : int_(sqrt2)^(x) (dt)/(tsqrt(t^2 - 1)) = pi/2 is :