Home
Class 12
MATHS
int0^1( t a n^-1 x)/x dx=...

`int_0^1( t a n^-1 x)/x dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^1x t a n^(-1)x\ dx

Evaluate the following integral: int_0^1x t a n^(-1)x\ dx

Evaluate: int_0^1(x t a n^(-1)x)/((1+x^2)^(3//2))dx

If 2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx then int_0^1 tan^(-1)(1-x+x^2) dx=

If int_0^1 f(x) dx = 1, int_0^1 xf(x) dx = a, int_0^1 x^2 f(x) dx = a^2 , then int_0^1 (a - x)^2 f(x) dx is equal to :

The value of I = int_0^(pi/4) (tan^(n+1)x)dx + 1/2 int_0^(pi/2) tan^(n-1)(x/2) dx is equal to

int_(0)^(1) x (1 -x)^(n) dx=?

I_(m,n) = int_0^1 x^m (l_n x)^n dx equals:

Show that : int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx

Show that : int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx