Home
Class 10
MATHS
theta=((2)/(13))/((sin^(2)theta-cos^(2)t...

theta=((2)/(13))/((sin^(2)theta-cos^(2)theta)/(2sin theta*cos theta))+(1)/(tan^(2)theta)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta = 12/13 (0^(@) lt theta lt 90^(@)) , find the value of (sin^(2) theta - cos^(2)theta)/(2 sin theta cos theta) xx (1)/(tan^(2)theta) .

If sin theta=(12)/(13), find the value of (sin^(2)theta-cos^(2)theta)/(2sin theta cos theta)xx(1)/(tan^(2)theta)

If cos theta=(5)/(13), find the value of (sin^(2)theta-cos^(2)theta)/(2sin theta cos theta)xx(1)/(tan^(2)theta)

(1+sin2 theta-cos2 theta)/(1+sin2 theta+cos2 theta)=tan theta

If sin theta=12/13 find the value of (sin^2 theta-cos^2 theta)/(2sin theta cos theta)xx1/(tan^2 theta)

tan^(2)theta-tan^(2)(90^(@)-theta)=(sin^(2)theta-cos^(2)theta)/(sin^(2)theta cos^(2)theta)

(sin theta-2sin^(3)theta)/(2cos^(3)theta-cos theta)=tan theta

(1 + sin theta-cos theta) / (1 + sin theta + cos theta) = (tan theta) / (2)

Prove each of the following identities : (i) (sin theta - cos theta)/(sin theta + cos theta) + ( sin theta+ cos theta)/(sin theta - cos theta) = (2)/((2 sin^(2) theta -1)) (ii) (sin theta + cos theta ) /(sin theta - cos theta) + ( sin theta - cos theta) /(sin theta + cos theta) = (2) /((1- 2 cos^(2) theta))

Prove each of the following identities : (sin theta + cos theta)/(sin theta - cos theta) + (sin theta - cos theta)/(sin theta + cos theta) = (2) /((sin^(2) theta - cos^(2) theta)) = (2) /((2sin^(2) theta -1))