Home
Class 12
MATHS
[" a) Prove that "((x+y+z)/(3))^(x+y+z)<...

[" a) Prove that "((x+y+z)/(3))^(x+y+z)<=x^(x)y^(y)z^(z)<=((x^(2)+y^(2)+z^(2))/(x+y+z))^(x+y+z)],[" where "x,y,z in N]

Promotional Banner

Similar Questions

Explore conceptually related problems

if x+y+z=0,then Prove that (xyz)/((x+y)(y+z)(z+x))=-1 where(x!=-y,y!=-z,z!=-x)

(If(y+z-x))/((x(y+z-x))/(log y))=(y(z+x-y))/(log y)(z(x+y-z))/(log z), prove that x^(y)y^(x)=z^(x)y^(z)=x^(z)z^(x)

If (y+z-x)/(log x)=y(z+x-y)/(log y)=z(x+y-z)/(log z) Prove that x^(y)y^(x)=z^(y)y^(z)=x^(z)z^(x)

Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z),(x, y,a+z)|=a^2(a+x+y+z)

Prove that [(x^2+y^2+z^2)/(x+y+z)]^(x+y+z)> x^x y^y z^z >[(x+y+z)/3]^(x+y+z)(x ,y ,z >0)

Prove that [(x^(2)+y^(2)+z^(2))/(x+y+z)]^(x+y+z)>x^(x)y^(y)z^(z)>[(x+y+z)/(3)]^(x+y+z)(x,y,z>0)

Prove that [(x^2+y^2+z^2)/(x+y+z)]^(x+y+z)> x^x y^y z^z >[(x+y+z)/3]^(x+y+z)(x ,y ,z >0)

Prove that [(x^2+y^2+z^2)/(x+y+z)]^(x+y+z)> x^x y^y z^z >[(x+y+z)/3]^(x+y+z)(x ,y ,z >0)

If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove that "x^(y) y^(x) = z^(y) y^(z) = x^(z) z^(x) .