Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove the following : `|[a, a^2,bc],[b,b^2,ca],[c,c^2,ab]|=(a-b)(b-c)(c-a)(b c+c a+a b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants,prove the following : det[[a,a^(2),bcb,b^(2),cac,c^(2),ab]]=(a-b)(b-c)(c-a)(bc+ca+ab)

Using properties of determinants prove the following. abs[[1,a,bc],[1,b,ca],[1,c,ab]]=(a-b)(b-c)(c-a)

Using properties of determinants prove the following. abs[[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4abc

Using the Properties of determinants, prove the following: {:|(1,1,1),(a,b,c),(bc,ca,ab)|=(a-b)(b-c)(c-a)

Using properties of determinants prove the following. abs[[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]]=(a+b+c)^3

Using properties of determinants, prove the following |(3a,-a+b,-a+c),(a-b,3b,c-a),(a-c,b-c,3c)|=3(a+b+c)(ab+bc+ca)

Using the properties of determinants show that : |[[a^2, b^2, c^2],[bc,ca,ab],[a,b,c]]|=(a-b)(b-c)(c-a)(ab+bc+ca)

Using properties of determinants, show the following: |[(b+c)^2,ab, ca],[ab,(a+c)^2,bc ],[ac ,bc,(a+b)^2]|=2abc(a+b+c)^3

Using properties of determinants, prove the following: |[a^2 + 1,ab, ac], [ab,b^2 + 1,b c],[ca, cb, c^2+1]|=1+a^2+b^2+c^2

using properties of determinants, prove that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a) .