Home
Class 12
MATHS
If f is continuous function at x = 0, w...

If `f ` is continuous function at `x = 0`, where `f(x)=((2^x+3^x)/2)^(2/x)`, then `f(0)` is one of the roots of the equation

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(e^(x^(2))-cosx)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sin (pi cos^(2)x))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(log sec^(2)x)/(x sin x) , for x!= 0 then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sin(x^(2)-x))/(x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(1+2x)^(1/x)", for " x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sqrt(1+x)-root3(1+x))/(x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=