Home
Class 11
PHYSICS
If vecA,vecB and vecC are coplanar vecto...

If `vecA,vecB` and `vecC` are coplanar vectors, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)] is equal to

If vecA, vecB, vecC are non-coplanar vectors then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecAxxvecB)=

If vecA, vecB, vecC are non-coplanar vectors then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecAxxvecB)=

If vecA, vecB, vecC are non-coplanar vectors then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecAxxvecB)=

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kvecb .

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kvecb .

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kbvecb .

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kvecb .

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kbvecb .

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kvecb .