Home
Class 12
MATHS
f(x)=(log(2x)3)/(cos^(-1)(2x-1))...

f(x)=(log_(2x)3)/(cos^(-1)(2x-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(log_(e)(log_((1)/(2))|x-3|))/(x^(2)-4x+3) is

If f(x) is continuous at x=1 , where f(x)=(log_(2)2x)^(1/(log_(2)x) , for x!=1 , then f(1)=

The domain of function defined by f(x)=log_((1)/(3))log_((1)/(2))(x^(2)+4x+3)+cos sqrt(sin((x)/(2))) is

The domain of function defined by f(x)=log_((1)/(3))log_((1)/(2))(x^(2)+4x+3)+cos sqrt(sin((x)/(2)) ) is

If g(x)=log_(f^(2)(x))((f(x)-1)/(f(x)-2))+(3f(x)-3)^(20)+sin^(-1)((f(x))/(7))+sqrt(cos(sin f(x)))) where f(x) is a real valued function,then the range of f(x) for which g(x) is defined.

The natural domain of the function f(x)=4^(-x)+cos^(-1)((x)/(2)-1)+log(cos x)

f(x) be a differentiable function such that f'(x)=(1)/(log_(3)(log_((1)/(4))(cos x+a)))* If f(x) is increasing for all values of x, then

The domain of the function: f(x) = sqrt(sin^(-1)(log_(2)x)) + sin^(-1)((1+x^(2))/(2x)) + sqrt(cos(sinx)) is:

range of the function f(x)=log_(2)(((sin x+cos x)+3(2)^((1)/(2)))/(2^((1)/(2)))) is given by

The domain of the function f(x)=log_(2x-1)(x-1) is