Home
Class 12
MATHS
[" 14."x=cos^(-1)(1)/(sqrt(1+t^(2))),y=s...

[" 14."x=cos^(-1)(1)/(sqrt(1+t^(2))),y=sin^(-1)(1)/(sqrt(1+t^(2)))],[" 15.If "t=3cos t-2cos^(3)t,y=3sin t-2sin^(3)t," show that "(dy)/(dx)=cot t]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x =3 cos t-2cos ^(3) t,y =3 sin t- 2 sin ^(3) t,then (dy)/(dx) =

If x = cos^(-1) (1/(sqrt(1+t^(2)))), y = sin^(-1) (t/(sqrt(1+t^(2)))) then dy/dx =

If x = 3 cos t - 2 cos^3 t and y = 3 sin t - 2 sin^3 t , show that dy/dx = cott

If x = 3 cos t - 2 cos^3 t,y = 3 sin t- 2 sin^3 t, then dy/dx is

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

x = cos^(-1)((1)/(sqrt(1+t^(2)))),y = sin^(-1)((t)/(sqrt(1+t^(2))))rArr(dy)/(dx) is equal to

Find (dy)/(dx), when x=cos^(-1)(1)/(sqrt(1+t^(2))) and y=sin^(-1)(t)/(sqrt(1+t^(2))),t in R

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

If x=cos^-1(1/(sqrt(1+t^2))) , y=sin^-1(1/(sqrt(t^2+1))) then dy/dx is independent of t.

Find (dy)/(dx), when x=(cos^(-1)1)/(sqrt(1+t^(2))) and y=(sin^(-1)t)/(sqrt(1+t^(2))),t in R