Home
Class 12
MATHS
The value of lim(x->0)(1-(cos2x)^3(cos5x...

The value of `lim_(x->0)(1-(cos2x)^3(cos5x)^5(cos7x)^7(sec4x)^9(sec6x)^11)/x^2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

lim_(x->0) (cos2x-cos4x)/(cos3x-cos5x) =

lim_(x-gt0)(cos2x-cos3x)/(cos4x-1)

The value of lim_(x rarr0)(1-cos2x sec3x)/(x^(2)) is

lim_(x->0)(1-cos x-cos2x+cos x*cos2x)/(x^(4))

Evaluate : lim_(xrarr0)(cos5x-cos7x)/(cosx-cos5x)

value of lim_(x rarr0)((1-cos2x)sin11x)/(x^(2)sin7x) is

lim_(x to 0) (cos5x-cos7x)/(cosx-cos5x)