Home
Class 12
MATHS
Prove that: tan^(-1)(2/11)+tan^(-1)(7/24...

Prove that: `tan^(-1)(2/11)+tan^(-1)(7/24)=tan^(-1)(1/2)`

Text Solution

Verified by Experts

We know, `tan^-1x+tan-^-1y = tan^-1((x+y)/(1-xy))`
So, `L.H.S. = tan^-1(2/11)+tan^-1(7/24)`
`=tan^-1((2/11+7/24)/(1-2/11**7/24))`
`=tan^-1(125/250)`
`=tan^-1(1/2)=R.H.S.`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that tan^(-1)(2/11) + tan^(-1)( 7/24) =tan^(-1) (1/2)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

prove that tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3)=pi

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Prove that : tan^(-1)1/7+tan^(-1)1/(13)=tan^(-1)2/9