Home
Class 12
MATHS
[I(1)=int(0)^(1)2^(x^(2))dxquad I(2)=int...

[I_(1)=int_(0)^(1)2^(x^(2))dxquad I_(2)=int_(0)^(1)2^(x^(3))dx-int_(1)^(2)2^(x^(2))dx],[I_(1)=int_(2)^(2)x^(2)dx]

Promotional Banner

Similar Questions

Explore conceptually related problems

IfI_(1)=int_(0)^(1)2^(x^(2)),I_(2)=int_(0)^(1)2^(x^(3))dx,I_(3)=int_(1)^(2)2^(x^(2))dx,I_(4)=int_(1)^(2)2^(x^(3))dx then which of the following is/are true? I_(1)>I_(2)(b)I_(2)>I_(1)I_(3)>I_(4)(d)I_(3)

l_(1)=int_(0)^(1)3^(x^(2))dx,l_(2)=int_(0)^(1)3^(x^(3))dx,l_(3)=int_(1)^(2)3^(x^(2))dx,l_(4)=int_(1)^(2)3^(x^(3))dx then (i)I_(1)>I_(2)(ii)I_(2)>I_(1)(iii)I_(3)>I_(4)(iv)I_(4)>I_(3)

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(2))dx then

If I_(1) = int_(0)^(1) 2^(x^(2))dx, I_(2) = int_(0)^(1) 2^(x^(3))dx , I_(3) = int_(1)^(2) 2^(x^(2))dx, I_(4)=int_(1)^(2) 2^(x^(3))dx then

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

If I_(1) = int_0^(1) 2^(x^(2)) dx, I_(2) = int_0^(1) 2^(x^(3)) dx, I_(3) = int_1^(2) 2^(x^(2)) dx, I_(4) = int_1^(2) 2^(x^(3)) dx then,

I=int_(0)^(1)((1+x)/(2-x))dx

If i is the greatest of the definite integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)dx,I_(2)=int_(0)^(1)e^(-x^(2))cos^(2)xdx and I_(3)=int_(0)e^(-x^(2))dx,I_(4)=int_(0)^(1)e^(-((x^(2))/(2)))dx then (A)I_(1)(B)I_(2)(C)I_(3)(D)I_(4)

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-x^(1//2)x^(2))dx . The greatest of these integrals, is

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-(1//2)x^(2))dx . The greatest of these integrals, is