Home
Class 12
MATHS
Minimise Z=sum(j=1)^n sum(i=1)^m c(ij) x...

Minimise `Z=sum_(j=1)^n sum_(i=1)^m c_(ij) x_(ij)` Subject to `sum_(i=1)^m x_(ij)=b_j,j=1,2,.....,n sum_(j=1)^n x_(ij)=b_j,i=1,2,.....,m` is a `LPP` with number of constraints

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(j=1)^(n)sum_(i=1)^(n)i=

Minimize z=sum_(j=1)^(n)" "sum_(i=1)^(m)c_("ij ")x_("ij") Subject to : sum_(j=1)^(n)x_("ij")=a_(i),i=1,..........,m sum_(i=1)^(m)x_("ij")=b_(i),j=1,..........,n is a LPP with number of constraints

S=sum_(i=1)^(n)sum_(j=1)^(i)sum_(k=1)^(j)1

Find the sum sum_(j=0)^(11)sum_(i=j)^(11)([ij])

The value of sum_(i=1)^(n) sum_(j=1)^(i) sum_(k=1)^(j) 1 is

sum_(i = 1)^n sum_(j = 1)^i sum_(k = 1)^j 1 is equal to

sum_(i=1)^(n) sum_(j=1)^(i)sum_(k=1)^(j) 1 equals :