Home
Class 12
MATHS
The value of lim(n->oo) [tan(pi/(2n)) t...

The value of `lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)[tan((pi)/(2n))tan((2 pi)/(2n))......tan((n pi)/(2n))]^((1)/(n))

T h ev a l u eof(lim)_(nvecoo)[t a npi/(2n)tan(2pi)/(2n)dottan(npi)/(2n)]^(1//n)i s e (b) e^2 (c) 1 (d) e^3

lim_(n to oo)(1)/(n)[tan.(pi)/(4n)+tan.(2pi)/(4n)+…..+tan.(n pi)/(4n)]

Evaluate the following define integrals as limit of sums : lim_(n rarroo) 1/n [tan. (pi)/(4n) + tan. (2pi)/(4n)+....+tan. (n pi)/(4n)]

lim_(n rarr oo) 1/n[sin(pi/(2n))+sin(pi/n)+sin((3pi)/2n)+........+sin(pi/2)] =

Evaluate the limit . lim_(n to oo) (1)/(n) [tan (pi)/(4n) + tan (2pi)/(4n) +………..tan (npi)/(4n)]

lim_ (n rarr oo) (1) / (n) [tan ((pi) / (4n)) + tan ((2 pi) / (4n)) + ... tan ((n pi) / (4n) )]

lim_( n to oo) (sin ""(pi)/(2n) . sin ""(2pi)/(2n). sin ""(3pi)/(2n)......sin""((n -1) pi)/(2n))^(1//n) is equal to

The value of lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1/n) is equal to