Home
Class 12
MATHS
If lambda=int0^1(e^t)/(1+t), then int0^1...

If `lambda=int_0^1(e^t)/(1+t)`, then `int_0^1e^tlog_e(1+t)dt` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If k=int_(0)^(1) (e^(t))/(1+t)dt , then int_(0)^(1) e^(t)log_(e )(1+t)dt is equal to

If int_0^1 (e^t)/(1 + t) dt = a, then int_0^1 (e^t)/((1 + t)^(2))dt is equal to:

If int_(0)^(1)(e^(t))/(1+t)dt=a then int_(0)^(1)(e^(t))/((1+t)^(2))dt is equal to

If A = int_(0)^(1) (e^(t))/(1+ t)dt then int_(0)^(1) e^(t) ln (1 + t) dt=

If int_0^1e^t/(t+1) dt=a , then int_(b-1)^b e^(-t)/(t-b-1) dt =

Let f(x)=(e^x+1)/(e^x-1) and int_0^1x^3*(e^x+1)/(e^x-1)dx=alpha. Then int_-1^1 t^3f(t) dt is equal to

If b=int_(0)^(1) (e^(t))/(t+1)dt , then int_(a-1)^(a) (e^(-t))/(t-a-1) is

If underset0 overset1 int e^t/(1+t)dt=a , then underset0 overset1 int(e^t)/(1+t)^2dt is equal to

If int_(0)^(1)(e^(t)dt)/(t+1)=a , then int_(b-1)^(b)(e^(-t)dt)/(t-b-1) is equal to a) ae^(-b) b) -ae^(-b) c) be^(-b) d)None of these