Home
Class 12
MATHS
Consider the function f(0)=4(sin^(2) the...

Consider the function f(0)`=4(sin^(2) theta + cos^(4) theta)`
what is the maxium value of the funciton `f(theta)`?

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(theta) = cos (pi sin^(2) theta) , is

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

The range of the function f(theta)=sqrt(8sin^(2)theta+4cos^(2)theta-8sin theta cos theta) is

Find the value of (sin^4 theta - cos^4 theta)/(sin^2 theta - cos^2 theta)

f(theta)=sin^(4)theta+cos^(2)theta then range of f(theta)

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

sin^(4) theta + cos ^(4) theta + 2sin^(2) theta cos ^(2) theta has value 1.

If 3"sin"theta+5"cos"theta=4 , then what is the value of (3"cos"theta-5"sin"theta)^(2) ?