Home
Class 12
MATHS
For x in R and a continuous function f,...

For `x in R` and a continuous function `f,` let `I_1=int_(s in^2t)^(1+cos^2t)xf{x(2-x)}dxa n dI_2=int_(sin^2t)^(1+cos^2)xf{x(2-x)}dxdotT h e n(I_1)/(I_2)` is `-1` (b) 1 (c) 2 (d) 3

Promotional Banner

Similar Questions

Explore conceptually related problems

For x in R and a continuous function f, let I_1=int_(sin^2t)^(1+cos^2t)xf{x(2-x)}dx and I_2=int_(sin^2t)^(1+cos^2t)f{x(2-x)}dx .Then (I_1)/(I_2) is (a) -1 (b) 1 (c) 2 (d) 3

For x in R and a continuous function f, let I_1=int_(sin^2t)^(1+cos^2t)xf{x(2-x)}dx and I_2=int_(sin^2t)^(1+cos^2t)f{x(2-x)}dx .Then (I_1)/(I_2) is (a) -1 (b) 1 (c) 2 (d) 3

For x epsilonR , and a continuous function f let I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx and I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx . Then (I_(1))/(I_(2)) is

For x epsilonR , and a continuous function f let I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx and I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx . Then (I_(1))/(I_(2)) is

For x in R and a continuous function f(x) , let I_(1)int_(sin^(2)t)^(1+cos^(2)t) xf{x(2-x)} dx and I_(2) I_(1)int_(sin^(2)t)^(1+cos^(2)t) f(x(2-x))dx. Then, (I_(1))/(I_(2)) =

For any tinR and f be a continuous function, let I_1 = int _(sin^2t)^(1+cos^2t) x*f(x(2-x))dx and I_2 =int_(sin^2t)^(1+cos^2t) f(x(2-x))dx. Then I_1/I_2is (i)0 (ii)1 (iii)2 (iv)3

For any x in R, and f be a continuous function Let I_(1) = int _(sin ^(2)x )^(1-cos ^(2)x) tf t (2-t)dt, I_(2) = int _(sin ^(2)x ) ^(1+cos ^(2)x) f (t(2-t))dt, then I_(1)=

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2