Home
Class 12
MATHS
यदि A=[(a,b),(b,a)] तथा A^(2)=[(alpha,be...

यदि `A=[(a,b),(b,a)]` तथा `A^(2)=[(alpha,beta),(beta,alpha)]` तब सिद्ध कीजिए की `alpha=a^(2)+b^(2)` व `beta=2ab`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(a,b),(b,a)] and A^(2)=[(alpha, beta),(beta, alpha)] then

If A=[(a,b),(b,a)]and A^(2)=[(alpha,beta),(beta,alpha)] , then -

If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] then

If A=[(a,b),(b,a)] and A^2=[(alpha, beta),(beta, alpha)] then (A) alpha=a^2+b^2, beta=ab (B) alpha=a^2+b^2, beta=2ab (C) alpha=a^2+b^2, beta=a^2-b^2 (D) alpha=2ab, beta=a^2+b^2

If A=[[a , b] ,[ b , a]] A^(2)=[[alpha , beta] ,[ beta , a]] then

If alpha, beta are the roots of the quadratic equation x^2 + bx - c = 0 , the equation whose roots are b and c , is a. x^(2)+alpha x- beta=0 b. x^(2)-[(alpha +beta)+alpha beta]x-alpha beta( alpha+beta)=0 c. x^(2)+[(alpha + beta)+alpha beta]x+alpha beta(alpha + beta)=0 d. x^(2)+[(alpha +beta)+alpha beta)]x -alpha beta(alpha +beta)=0

If alpha, beta are the roots of the quadratic equation x^2 + bx - c = 0 , the equation whose roots are b and c , is a. x^(2)+alpha x- beta=0 b. x^(2)-[(alpha +beta)+alpha beta]x-alpha beta( alpha+beta)=0 c. x^(2)+[(alpha + beta)+alpha beta]x+alpha beta(alpha + beta)=0 d. x^(2)+[(alpha +beta)+alpha beta)]x -alpha beta(alpha +beta)=0